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Abstract—There exists a large conceptual gap between sym-
bolic models and emergent models for the mind. Many emergent
models work on low-level sensory data, while many symbolic
models deal with high-level abstract (i.e., action) symbols. There
has been relatively little study on intermediate representations,
mainly because of a lack of knowledge about how representations
fully autonomously emerge inside the closed brain skull, using
information from the exposed two ends (the sensory end and
the motor end). As reviewed here, this situation is changing. A
fundamental challenge for emergent models is abstraction, which
symbolic models enjoy through human handcrafting. The term
abstract refers to properties disassociated with any particular
form. Emergent abstraction seems possible, although the brain
appears to never receive a computer symbol (e.g., ASCII code) or
produce such a symbol. This paper reviews major agent models
with an emphasis on representation. It suggests two different ways
to relate symbolic representations with emergent representations:
One is based on their categorical definitions. The other considers
that a symbolic representation corresponds to a brain’s outside
behaviors observed and handcrafted by other outside human
observers; but an emergent representation is inside the brain.

Index Terms—Agents, attention, brain architecture, complexity,
computer vision, emergent representation, graphic models, mental
architecture, neural networks, reasoning, regression, robotics,
speech recognition, symbolic representation, text understanding.

I. INTRODUCTION

O VER 55 years ago, Alan M. Turing [1] raised a well-
known question: “Canmachines think?” However, brain-

like thinking has to do with the type of the representation and
the nature of the architecture that the machines employ. As the
field of artificial intelligence (AI) is inspired by human intelli-
gence, different representations and agent architectures are all
inspired by the brain to different degrees. A grand challenge
is to understand the brain’s internal representation which tells
the working of intelligence inside the brain. Meeting this grand
challenge seems necessary to enable machines to reach human
level intelligence.
Meeting this grand challenge seems also necessary to enable

each human to truly understand himself scientifically. A solution
to this grand challenge is expected to lead to answers for many
important questions. For example, to what degree human brains,
primate brains, mammal brains, and vertebrate brains share the
same set of principles?Whydo different brains show such awide
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variety of behaviors? What is developmental science? What
does the developmental science tell us aboutways to improve the
quality of human lives in different parts of the world?
Representation and mental architecture are two tightly inter-

twined issues for both natural intelligence and artificial intelli-
gence. Since the early production systems in the early 70s [2],
[3] there has been an increasing flow of research on cognitive
architectures. Allport [4] reviewed studies on architectures of at-
tention and control. Langley et al. [5] provided an overview of
cognitive architectures, mainly of the symbolic type. Orebäck &
Christensen [6] reviewed a few architectures of mobile robots.
Recently, in a special issue on autonomous mental development,
Vernon et al. [7] presented a review for cognitive system ar-
chitectures, with an emphasis on key architectural features that
systems capable of autonomous development of mental capabil-
ities should exhibit. Barsalou [8] gave a review about grounded
cognition from the psychological points of view, emphasizing
brain’s modal system for perception (e.g., vision, audition), ac-
tion (e.g., movement), and introspection (e.g., affect). It con-
trasts grounded cognition with traditional views that cognition
arises from computation on amodal symbols inside a modular
system. It addresses a question: “does the brain contain amodal
symbols?”
This review does not mean to repeat those reviews, but rather

to bring up representative models for the emphasis on the types
of representation and the issue of emergence. Here I raise two
questions:

Does the brain contain computer symbols at all in its
internal representations? Why is fully autonomous emer-
gence necessary for intelligence, natural and artificial?

I argue through this review that the brain does not seem to
contain any computer symbol at all in its internal representa-
tions for the extra-body environment (i.e., outside the body),
and its internal representations seem all emergent and aremodal
in terms of the information origin about the extra-body envi-
ronment (e.g., vision, audition, motor, glands). Incrementally
dealing with unexpected new extra-body environments through
real-time fully autonomous emergence inside the brain is an
essence of intelligence, both natural and artificial.
There is a lack of reviews of cognitive architectures that cover

the subjects of perception, cognition, and decision-making in
terms of computation. A large number of cognitive architec-
tures do not address perception or at least do not emphasize it.
However, the brain spends over 50% of the cortical areas for
visual information processing [9], [10]. An illuminating fact is
that different cortical areas use the same 6-layer laminar struc-
ture to deal with very different signal processing tasks: vision,
audition, touch, association, decision making, and motor con-
trol ([11], pp. 327–329)—indicating that we should not isolate
abstract decision making from grounded sensory processing.

1943-0604/$26.00 © 2011 IEEE
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It seems that the way perception, cognition, and motor con-
trol are conducted in the brain is different from what many ex-
isting agent architectures have modeled. Grounded autonomous
mental development is necessary for understanding major limi-
tations of existing agent architectures that do not address the de-
velopment of sensory systems (e.g., vision) as an integral part.
This paper will first review major agent architectures in-

cluding the subjects of perception, cognition, and movement.
This scope is wider than the traditional subject of symbolic
cognitive architectures by including perception. Representation
is the central theme of this review. Further, this review will
emphasize the relationships among different types of agent
architectures, instead of providing a long list of existing archi-
tectures with the features from each, so that the reader can see
fundamental conceptual differences.
In the remainder of this paper, Section II outlines the

framework of autonomous mental development (AMD) and
discusses its necessity for understanding natural intelligence
and for strong machine intelligence. Section III reviews
symbolic models. Section IV overviews emergent models.
Section V presents the gap between the brain-mind and existing
frameworks. Section VI provides some concluding remarks.

II. AMD: A CROSS-DISCIPLINARY SUBJECT

The human central nervous system (CNS) demonstrates a
wide variety of capabilities. We collectively call them mental
capabilities. They can be divided into four categories, percep-
tion, cognition, movement, and motivation. The new field of au-
tonomous mental development aims to: 1) understand human
mental development; and 2) enable machines to autonomously
develop their mental skills.
AMD includes two scopes—the development of a single

mind and the department of multiple minds as a society. The
principles of developing a single mind might be of great value
for studying the science for social development, human and
robotic.

A. AMD Directly Related Research Fields

Research on how the mind works can be categorized in dif-
ferent ways. The following is a way proposed by Weng & Mc-
Clelland [12].
1) Explain mind behaviors. Study human and animal be-
haviors under exposure to stimuli. Much of the research
in traditional psychology falls into this category. This
category alone is insufficient. It seems to have also led
some researchers to attribute mind behaviors to something
other than clearly understandable computation. For ex-
ample, Penrose [13], [14], facing fundamental problems
of mathematic logic, attributed mind behaviors (e.g.,
consciousness) to quantum computation.

2) Model mind behaviors. Computationally model behav-
iors under stimuli expositions and verify the resulting
models using studies in category 1). This level of mod-
eling does not necessarily take into account how the brain
works and how the brain-mind develops from experi-
ence. Much of the productive research in AI and many
recent computational studies in psychology belong to this
category.

This category alone appears also insufficient, as it has
misled researchers to handcraft static symbolic models
which we will discuss below. The resulting machines
cannot override the static symbols and they become brittle
in the real world [e.g., the symbolic hyper-graph of artifi-
cial general intelligence (AGI) [15]].

3) Model the brain. Computationally model how the brain
works, at different scales: the cortex, the circuits, and
the neurons. This level of modeling does not necessarily
take into account how the brain develops from experi-
ence. Much of the research in neuroscience belong to this
category, although many existing studies focus on lower
levels.
This category alone appears also insufficient. It has misled
researchers to handcraft static concept boundaries in the
brain, resulting in symbolic models (e.g., statically consider
the primary visual area, V1, as edge detectors, e.g., George
& Hawkins 2009 [16], or using the static Gabor filters to
model dynamic V1 processing [17], [18]).

4) Modeling brain development. Computationally model
how the brain develops, at different scales: the brains, the
cortex, the circuits, and the neurons. This deeper level
of modeling takes into account not only how the brain
works now but also how the brain developed its ways of
work in the past. Much of the research in AMD belongs
to this category, although this field includes also research
that does not emphasize support from brain facts (e.g.,
incremental learning).
A natural question is that whether humans can design
the functions of the “genome” program well enough to
approach human-level intelligence without actually simu-
lating the extremely expensive evolution of the “genome”
itself. Since the cost for evolving the brain-part of the
human genome is extremely high, this category seems our
best hope for human level performance.

Researchers are increasingly aware of the necessity of mod-
eling brain development. It is not only for understanding how
the brain-mind works, but also for solving many bottleneck
problems in AI. In the following, we further discuss such
computational problems.

B. Developmental Program: Task Nonspecificity

By definition, an agent is something that senses and acts. A
robot is an agent, so is a human. In the early days of AI, smart
systems that caught the general public’s imagination were pro-
grammed by a set of task-specific rules. The field of AI moved
beyond that early stage when it started the more systematic
agent methodology [19], although an agent is still a task-spe-
cific machine.
1) Task Nonspecificity: Not until the NSF and DARPA

funded Workshop on Development and Learning (WDL) in
April 2000 [20], [21] had the concept of the task-nonspecific de-
velopmental program caught the attention of many researchers.
Let us first explicitly define the concept of task-nonspecificity
for the purpose of this review:
Definition 1 (Task Nonspecificity): An agent is task nonspe-

cific if: 1) during the programming phase, its programmer is not
given the set of tasks that the agent will end up learning; 2)
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during the learning phase, the agent incrementally learns var-
ious task execution skills from interactions with the environ-
ment using its sensors and effectors; and 3) during the task ex-
ecution phase, at any time the agent autonomously figures out
what tasks should be executed from the cues available from the
environment.
For example, a teacher says “to address D!,” the robot figures

out that the next goal is to go to the address D. On its way to the
address D, the robot must figure out what to do, such as look
for traffic signs and avoid obstacles. After reaching the address
D, it figures out that it is time to stop and report. All the goals
and subgoals are acquired from the environment—outside and
inside the brain.
Therefore, the task nonspecificity does not mean that different

instances of a framework (e.g., a type of neural network) can
be used for different tasks through a manual adaptation of the
framework. Such an agent is still a single-task agent. Further-
more, skill sharing and scaffolding are both implied by the in-
cremental learning mode required by the above definition. Skill
sharing means each skill is useful for many tasks. Scaffolding
means that early-learned skills assist the learning of later more
complex skills.
By the end of WDL, the concept of task-nonspecific develop-

mental program had not been well accepted by leading develop-
mental psychologists like Esther Thelen. She sent to me The On-
togeny of Information by Susan Oyama [22] to support that the
genomes only provide “constraints”. Not being computer scien-
tists and having seeing only some primitive artificial networks,
Susan Oyama and Esther Thelen thought that a computer pro-
gram is always too “rigid” to regulate the developmental process
for an entity as complex as brain. Oyama wrote ([22] p. 72):

If the processes are “programmed,” then all biological
events are programmed, and the concept of program
cannot be used to distinguish the innate from the acquired,
the adaptive from the nonadaptive, the inevitable from the
mutable.

However, biologists had no problem with calling “Epigenetic
programming” [23]–[25] even then, while they described body
development. Of course, since we insist that tasks are not given,
a developmental program for the brain-mind only regulates (i.e.,
constrains) the developmental process of the brain-mind while
the brain interacts with the real physical world. Development is
certainly not a totally “programed” process, since it is greatly
shaped by the environment. This is true for the brain and the
body.
2) Autonomous Mental Development: The human genome

is a developmental program [25], [20], [26]. It seems that the
developmental program embedded in the human genome [24]
is task-nonspecific. Such a developmental program enables the
growth of the human brain (and body) according to a biological
architecture [27], [28], such as the six-layer laminar architecture
of the cerebral cortex and the wiring under normal experience.
Such a development program is species specific, sensor specific,
and effector specific in the sense of providing processing areas
with default sensor-area pathways, but it is not feature specific
(handcrafted features). Further, the brain developed under inter-
nally generated spontaneous activities before birth enables the

development of inborn reflexes [29], which are important for
the early survival of the young individual right after the birth.
However, the developmental program of a human is task non-
specific, as the human adult can perform many tasks, including
tasks that his parents have never performed.
Early developmental programs were inspired by general-pur-

pose learning using neural networks. Cresceptron by Weng
et al. [30], [31], [32] internally autonomously grows (i.e.,
develops) a network. It seemed the first developmental net-
work for learning to recognize general objects directly from
natural complex backgrounds through interactions with human
operators. It appeared also the first that segments recognized
objects from natural complex backgrounds. By the mid 1990s,
connectionist cognitive scientists had started the exploration
of the challenging domain of development (McClelland [33],
Elman et al. [34], Quartz & Sejnowski [35]) emphasizing ideas
such as growing a network from small to large [36], and the
nonstationarity of the development process [35].
The term “connectionist” has been misleading, diverting at-

tention to only network styles of computation that do not ad-
dress how the internal representations emerge without human
programmer’s knowledge about tasks. Furthermore, the term
“connectionist” has not been very effective to distinguish (emer-
gent) brain-like networks from (symbolic) networks such as
Bayesian networks (also called belief nets by Peal [37] and
graphic models by many) which use a web of probabilities but
each network “skeleton” (base framework) is handcrafted, sym-
bolic, and static. Jordan & Bishop [38] used “neural networks”
to explicitly name symbolic graphical models. The long short-
termmemory (LSTM) by Hochreiter & Schmidhuber 1997 [39],
CLARION by Sun et al. [40], [41], the hierarchical temporal
memory (HTM) by George & Hawkins [16], the symbolic net-
work scheme proposed by Albus [42], the symbolic Bayesian
networks reviewed by Tenenbaum et al. [43] are some examples
among many. Lee & Mumford [44] used a vague, but intuitive
term “feature” to refer to each symbolic variable during their use
of the Bayesian rule for modeling cortex computation. Such a
misleading “connectionist” emphasis has allowed symbolic rep-
resentations to be misinterpreted as brain-liky representations. I
argue that such symbolic representations are fundamentally far
from brain-like representations and, therefore, their computa-
tion is far from brain-like computation.
I propose instead to use a more clear concept emergent

model which uses representations that fully autonomously
emerge—not allowing human handcrafting or twisting after the
human knows the tasks to be performed. A connectionist model
does not imply the use of a fully emergent representation (see
the definitions below). Connectionist computations can occur
in handcrafted symbolic networks (e.g., symbolic Bayesian
nets). I argue that the brain is emergent but a symbolic model
cannot be.
Some researchers may think that a “mixed approach”—

mixing autonomous emergence in some part with a static hand-
crafted design for other part—is probably most practical for
machines (e.g., mixed approaches in a survey by Asada et al.
[45]). They thought that fully autonomous development after
birth—from a newborn brain to an adult brain—seems unlikely
necessary for computers and robots at least at the current stage
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TABLE I
A COMPARISON OF APPROACHES TO ARTIFICIAL INTELLIGENCE AND TO MODELING THE MIND

Fig. 1. Paradigm of developmental agents, inspired by human mental development. No task is given during the programming (i.e., conception) time, during which
a general-purpose task-nonspecific developmental program is loaded onto the agent. Prenatal development is used for developing some initial processing pathways
in the brain using spontaneous (internally generated) signals from sensors. After the birth, the agent starts to learn an open series of tasks through interactions with
the physical world. The tasks that the agent learns are determined after the birth.

of knowledge. However, any mixed approach is task-specific
[20]. I provide reasons why the internal representations inside
the brain fully autonomously emerge and why this capability is
of essential importance not only for understanding the natural
brain-mind but also for computers and robots to address a series
of well-known bottleneck AI problems, such as brittleness,
scalability, and computational complexity. These bottleneck
problems are “here and now” for any partially autonomous
robot and any AI system.
3) Conceptual Comparison of Approaches: Therefore, a

hallmark difference between traditional AI approaches and
autonomous mental development [20] is task specificity. All
the prior approaches to AI are task specific, except the devel-
opmental approach. Table I lists the major differences among
existing approaches to AI and to modeling the mind. An entry
marked as “avoid modeling” means that the representation is
emergent from experience.
Traditionally, given a task to be executed by the machine,

it is the human programmer who understands the task and,
based on his understanding, designs a task-specific representa-
tion. Depending on different approaches, different techniques
are used to produce the mapping from sensory inputs to ef-
fector (motor) outputs. The techniques used range from direct
programming (knowledge-based approach), to learning the
parameters (learning-based approach), to handcrafting senso-
rimotor rules for resolving behavior conflicts (behavior-based
approach), to genetic search (genetic approach). Although
genetic search is a general-purpose method, the chromosome
representations used in artificial genetic search algorithms are
task specific. Additionally, the cost of genetic search for the
major components in the brain-part of developmental program
(DP) seems intractably high for human-level performance even
with full AMD.

Using the developmental approach inspired by human mental
development, the tasks that the robot (or human) ends up doing
are unknown during the programming time (or conception
time), as illustrated in Fig. 1. The ecological conditions that
the robot will operate under must be known, so that the pro-
grammer can design the body of the robot, including sensors
and effectors, suited for the ecological conditions. The pro-
grammer may guess some typical tasks that the robot will learn
to perform. However, world knowledge is not modeled and
only a set of simple reflexes is allowed for the developmental
program. During “prenatal” development, internally generated
synthetic data can be used to develop the system before birth.
For example, the retina may generate spontaneous signals to be
used for the prenatal development of the visual pathway. At the
“birth” time, the robot’s power is turned on. The robot starts
to interact with its environment, including its teachers, in real
time. The tasks the robot learns are in the mind of its teachers.
In order for the later learning to use the skills learned in early
learning, a well designed sequence of educational experience
is an important research issue.
Many variations of approaches in the field of AI are based

on a good intention of convergence toward more human-like
intelligence. They emphasize other factors such as embodiment
and activeness that are also implied for any developmental
agent [e.g., enactive AI [46] and various approaches to artificial
general intelligence (AGI) [15] which however use symbolic
representations]. They refine the learning-based approach and
behavior-based approach by taking advantage of both. Other
combinations of the four approaches in Table I have also
been investigated. For example, George & Hawkins 2009 [16]
intended to model some cerebral cortex. Because of their use of
handcrafted concept contents (e.g., features) and the boundaries
between concepts that are intrinsic to the symbolic Hidden
Markov Models (HMM) that they use, their representations
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Fig. 2. Agents using (a) symbolic representation and (b) emergent representa-
tion. In (a), the skull is open during manual development—the human program-
mers handpicked a set of task-specific extra-body concepts using human-under-
stood symbols and handcraft the boundaries that separate extra-body concepts.
In (b), the skull is closed during autonomous development—the human pro-
grammers only design task-nonspecific mechanisms involving only intrabody
concepts for autonomous mental development and the internal representations
autonomously emerge from experience. Many neural networks do not use the
feedback connections in (b).

seem to fall into the symbolic category, not emergent according
to our definition later (see Fig. 2).
4) Necessity of Autonomous Development: There are a series

of reasons for the necessity of autonomous mental development
[20], [47], [48]. Among the top compelling ones are:
1) high muddiness: the muddiness (in the sense of Weng
2009 [48]) of many tasks (including task environments) is
too high to be tractable by a static large-scale handcrafted
representation;

2) cost of learning: higher mental skills (e.g., complex at-
tention and abstract thinking) require rich learning. Then,
learning must be autonomous;

3) creativity: complex mental skills indicated by creativity
at different ages cannot be handcrafted since no human
knows the contents.

The task-nonspecificity of the developmental program rep-
resents a departure from traditional understanding and mod-
eling agent architectures. In the following two sections, I review
major published agent architectures emphasizing internal repre-
sentations.

III. SYMBOLIC REPRESENTATIONS

Symbols, including their meanings represented by languages,
are created by a human society for communication among hu-
mans. Each symbol, either an actual term that describes its
meaning (e.g., “cat,” “young,” or “kitten”) or its label “A,” has
a well-defined meaning understandable by a group of human
adults involved in the discussion. However, the agent itself does
not understand the meanings of each symbol. For example, all
the text strings in Fig. 8(b) are only in the minds of the human
group. The machine has no clue about the meanings of any of
the text strings.

Without a human language, many meanings cannot be effec-
tively conveyed from one person to another. Therefore, the first
representation type used by the AI community and the Cogni-
tive Science community is symbolic, although this type of repre-
sentation is not necessarily sufficient to characterize the human
brain’s internal representation and human intelligence.

A. Symbolic Representation

Since there have been several key concepts that tend to be
misleading in terms of representation, we need to be specific
in terms of definition for the purpose of this review. First, we
define the term “internal.”
Definition 2 (Internal): The term Internal in the “brain” of

an agent refers to everything inside the brain’s skull, which is
not directly exposed to the external world and cannot be directly
supervised by the external world.
Biologically, the term “brain” in the above definition should

be considered the central nervous system. The term “brain” is
used mainly for its more intuitive common sense.
The retina is an sensory port of the brain that is not internal,

as the external environment can directly “supervise” the image
on the retina. The motor neurons in the muscles are also not in-
ternal, as the external world (e.g., mother’s hand) can supervise
the motor neurons via direct physical guidance (e.g., guiding
child’s hand). In general, we consider that the sensory port (sen-
sors) and the motor port (effectors) of the brain are not internal,
since they are exposed to the external physical world, which in-
cludes the body and the extra-body environment, as illustrated
in Fig. 2.
A symbolic (internal) representation, illustrated in Fig. 2, is

defined in this review as follows:
Definition 3 (Symbolic): A symbolic representation in the

brain of an agent contains a number of concept zones where
the content in each zone and the boundary between zones are
human handcrafted. Each zone, typically denoted by a symbol,
represents a concept about the extra-body environment.
In order to be usable as intended, a symbolic representation

has the following three characteristics indicated by the three
italic words in the above definition, as shown by the example
in Fig. 2(a):
1) extra-body concepts: the concepts to be represented in-
clude those about the extra-body environment—outside
the body of the agent (e.g., oriented edges, human faces,
objects, tasks, goals), in addition to those about the intra-
body environment, such as body components (e.g.,muscles
and neurons) and inborn reflexes (e.g., sucking);

2) symbol: there is an association between each computer
symbol (e.g., ASCII code) and a text string in a natural
language so that the human programmers understand the
meaning of each computer symbol (e.g., text “car” in Eng-
lish) but the agent does not;

3) handcraft: the human programmers of the agent handcraft
the concept contents and boundaries inside the “skull”
of the agent, as illustrated in Fig. 2(a). By “skull,” we
mean the imaginary encapsulation that separates the agent
“brain” from the remainder world.

Allen Newell [3], Zenon Pylyshyn [49], and Jerry Fodor [50]
thought that the symbol systems popular in AI and computer
science can well characterize human cognition.
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Apparently, symbolic systems do not characterize sen-
sory perception well. S. Harnad [51], [52] raised the symbol
grounding problem, for which he proposed symbolic repre-
sentations in which symbolic names in the category taxonomy
be strung together into propositions about further category
membership relations (e.g., “zebra” is represented as “horse”
and “stripes”) ([52], p. 343).
A major advantage of symbolic representation is that the ele-

ments of the representation have prespecified abstract meanings
so that the representation is easier for humans to understand.
Such a symbolic representation follows a design framework

that is meant to be general (e.g., ACT-R). Many expert systems
can be built based on a framework. However, each design in-
stantiation that follows such a framework is still handcrafted
and static once handcrafted. Two things must be done manu-
ally in each instantiation—hand-picking and mapping. Given a
problem to be solved by the machine, the human programmer
must: 1) hand-pick a set of important concepts for the given task
and then; 2) manually establish a mapping between each con-
cept (e.g., location or object) and an symbolic element (e.g.,
a node) in the representation (e.g., for training). That is, the
learning process cannot start until a task-specific representation
is handcrafted and the external-to-internal mapping is manually
established.
Thus, using a symbolic representation, the human pro-

grammer is in the loop of task-specific representation design
and needs access to the internal representation during learning.
The agent is not able to learn skills for an open number of
simple-to-complex tasks through autonomous interactions in
open complex environments—the hallmark of autonomous
mental development. There are also some major technical
issues. For example, the curse of dimensionality [53] is a well
known problem of such a static set of hand-selected concepts
(or features), e.g., adding more handcrafted features does not
necessarily improve the recognition rate.
There are two types of symbolic representation, symbolic

monolithic and symbolic contextual. These are new definitions,
as far as I know. In the former, amonolithic data structure is used
to describe the modeled part of the extra-body environment. In
the latter, states are defined each of which represents a different
context but not the entire modeled extra-body environment.

B. Symbolic Monolithic

The agent architectures in this category use a monolithic
data structure to represent the extra-body environment that the
human programmer is interested in. A hypothetical agent ar-
chitecture of this type is shown in Fig. 3. The typical symbolic
concepts hand-picked for the representation include location,
size, color, and curvature. It is worth noting that if multiple
monolithic maps are used, e.g., one for depth and one for
curvature, the corresponding representation is still monolithic,
because it just uses different entries to store different concepts.
Much work in AI used symbolic monolithic representations.
1) Spatial: In computer vision, the 3-D shape of an object

and the 3-D motion of an object have been a major subject of
study. D. Marr et al. were among the earlier pioneers who in-
troduced computational modeling into understanding of human
vision. Fig. 4 illustrates an example, where 3-D location and

Fig. 3. Hypothetical agent architecture that uses a symbolic monolithic repre-
sentation for the extra-body environment.

Fig. 4. Example of symbolic monolithic spatial representation: Each element
in the representation corresponds to a symbolic meaning (binocular disparity)
of the part of the environment being represented. (a) Two stereo images of a
bottle. (b) The disparity map computed from the stereo images. (c) A smooth
disparity map interpolated from (b). Adapted from Grimson [57] (a), (b), and
Marr [58] (c).

Fig. 5. Example of symbolic monolithic short-term temporal representation:
Each needle in the spatial map corresponds to the motion speed of the pixel at
the location. Adapted from Horn & Schunck [59].

3-D shape of the object being modeled are of primary interest.
The representation is monolithic because a monolithic partial
3-Dmap (called 2.5-D) is used in the presentation. A prevailing
number of published methods for stereo vision used a symbolic
monolithic representation (e.g., Dhond & Aggarwal [54], Weng
et al. [55], and Zitnick & Kanade [56].)
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Fig. 6. SLAM by a robot from a transitory stereo image sequences with 151 time frames: (a) the robot; (b) the left image of frame 0; (c) the left image of frame
50; (d) the left image of frame 100; (e) the left image of frame 150. Lower row: The reconstructed 3-D surface optimally integrated from 151-frame transitory
image sequence, shown with original intensity viewed from an arbitrary direction. Adapted from Weng et al. [70].

2) Temporal: The temporal information of the modeled
world has been studied in the subject of motion. Algorithms
have been proposed to compute the motion velocity of indi-
vidual pixels, called optical flow. Horn & Schunck [59] were
among the first to propose a method to compute the optimal
flow field from a sequence of images. Fig. 5 illustrates the
monolithic spatio–temporal representation used. A rich collec-
tion of motion estimation methods have been published (e.g.,
from optical flow [60] and from large motion disparities [61]).
Object-based motion analysis methods have three categories

of assumptions: 1) a static world (e.g., [62] and [63]); 2) a single
rigid object (e.g., [64]–[66]); 3) nonrigid, but of a preassumed
type (e.g., elastic or articulated [67] and [68]). Human-defined
features have been used for motion analysis, including intensi-
ties, points, lines, and regions.
3) Long-Range Spatio–Temporal: The goal of the symbolic

monolithic representations is to model an extensive part of the
environment, but each sensory view only covers a small part.
Multiple sensed views have be integrated to give an extended
scene map where each component in the map takes advantage
of multiple observations from a moving robot.
Cheeseman & Smith [69] introduced the extended Kalman

filter (EKF) techniques to address this problem. The relative
locations of the tracked scene landmarks can be incrementally
integrated by EKF through multiple views of a mobile robot and
their estimated locations are provided along with estimated co-
variance matrices of errors. The transformation from one view
to the next is handcrafted and nonlinear. Local linear approxi-
mation is used by EKF.
Weng et al. [70] studied transitory sequenceswhich are those

image sequences whose first view does not share any scene
element with the last, as shown in Fig. 6. Their incremental
optimization algorithm [70] generated an image-intensity
mapped 3-D world map associated with estimated viewer
locations and poses along the trajectory. This was done by
optimally integrating a transitory image sequence using auto-

Fig. 7. Left: A 2-D range map constructed by FastSLAM from the laser scan
data acquired by a mobile robot which traveled along the marked red trajectory
(adapted from Hähnel et al. [74]). Right: Representation of errors of (simulated)
landmarks as uncertainty ellipses (adapted from Montemerlo et al. [75]).

matic pixel-based stereo matching and automatically selected
dynamically tracked visual features. A view of the automat-
ically constructed 3-D world map is shown in Fig. 6. This
problem was later called simultaneous localization and map-
ping (SLAM) [71]–[73], where range sensors are often used
for environment sensing instead of the stereo cameras used in
[70]. An example of the FastSLAM algorithm [74] is shown in
Fig. 7.
The theoretical analysis in Weng et al. [70] showed that the

error of the reconstructed world map through a transitory se-
quence intrinsically suffers from at least a linearly increasing ac-
cumulation of error determined by the Cramér-Rao lower error
bound. The farther the robot goes, the larger the expected error
is in the estimated location of the world map. This indicates a
major problem of monolithic representation.
The above systems do not assume a known type of object.

Model-basedmap reconstruction is a very active subject in com-
puter vision. Assuming that a scene contains only a human face,
somemodel-based experimental systems can build an image-in-
tensity mapped 3-D face model with minimal user interaction.
For example, Liu et al. [76] reported a system that takes images
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and video sequences of a face with a video camera. Five manual
clicks on two images are needed to tell the system where the eye
corners, nose top, and mouth corners are. Then, the system au-
tomatically generates a realistic looking 3-D human head model
and the reconstructed model can also be animated.
4) Model-Based Recognition: Model-based recognition has

a long history. Compared with previous tasks whose goal is
to construct 3-D shapes and other related properties such as
motion information, model-based recognition intends to pro-
vide more abstract information about the environment—object
type or other related information. It is the human programmer
who handcrafts a model about the type of objects to be recog-
nized, such as human faces, human bodies, and cars. A flexible
matching scheme is used to match the model to a given image,
typically assuming that the object modeled is present [77]–[84].
HMM has been used [85]–[87].
5) SMPA Framework: Not all the studies reviewed here

deal with cognition and robot control. A widely accepted, but
wrong, notion in the field of AI is that perception is a module in
an agent. This module inputs images and outputs an application
specific scene description Horn ([88], p.13), Ballard & Brown
([89], p. xiii) for later processing inside the agent. It was
hoped that perception problems would be resolved one day as
a module. Much of the research in the robotics field has been
concentrating on action generation and control (e.g., dancing or
walking by humanoids) which tends to impose relatively weak
demands on knowing the environment. Unfortunately, much
of the agent research has drastically simplified or bypassed
perception, concentrating on the cognition module. Later in the
review, we will see that both perception and cognition require
actions. The monolithic representation generated is suited for
the sense-model-plan-act framework (criticized by Brooks
[90]), or SMPA for short: 1) sense the environment; 2) build a
model of the sensed part of the environment, using a monolithic
representation.; 3) plan or replan the course of actions; 4) Act
according to the plan. Although the above SMPA sequence can
be updated when the robot receives new sensory information,
the framework is penalized by the requirement of building a
monolithic model.
6) Comments: There are some obvious advantages with sym-

bolic monolithic representations:
1) intuitive: it is intuitive and easy to be understood by a
human;

2) suited for visualization, as Figs. 4–7 show.
There is a series of disadvantages with a symbolic monolithic

representation. Some major ones are:
1) wasteful: the representation is a model about the environ-
ment, but only a very small part of the environment is re-
lated to the action at any time. Further, if a robot needs
to explore an open-ended world, no fixed-size monolithic
representation will be sufficient;

2) insufficient: the representation is often not sufficient to
generate all the desired behaviors. For example, a range
map is not sufficient for a robot to read a room number;

3) low level: yhe representation only deals with few low-
level symbolic attributes, such as location, distance, and

size. These attributes are not abstract enough for action
generation.

Is it true that the cerebral cortex uses symbolic represen-
tations, in the sense that its neurons represent orientation,
direction of motion, and binocular disparity? The discussion
in Section IV argues that the partition of the responsibilities
among neurons is not based on such human imagined symbolic
meanings.

C. Symbolic Contextual

In a symbolic contextual representation, only information
that is related to the immediate actions is represented as an
abstract symbolic state. The state is a representation of many
equivalent contexts. Therefore, in general, symbolic contextual
representations are more purposive than symbolic monolithic
representations.
Yiannis Aloimonos [91] pointed out correctly that computer

vision needs to be purposive in the sense that a monolithic rep-
resentation is not always necessary. However, symbolic con-
textual representations are not sufficiently powerful for dealing
with purposive vision in general open settings. Such a represen-
tation has been often used for modeling a symbolic or simplified
microworld. Examples of such microworlds are: a given word
in speech recognition, a given simplified human body action in
human action recognition, a given manipulatory action in robot
manipulation.
Symbolic contextual models have used finite automata

(FAs) [92] as the basis framework. Examples include ACT-R
[93], Soar [94]–[96], Neuro-Soar by Cho et al. [95], CYC
[97], Bayesian Nets (also called Semantic Nets, Belief
Nets, Bayesian parsing graph, Graphic Models) [37],
[19], [98]–[101], [43], Markov Decision Processes [102],
[103], the partially observable Markov decision process
(POMDP) [104], [102], the sensory classification counter-
part of POMDP—HMM [103], [105], {106], [86], [101], the
Q-learning Nets [107], and other reinforcement learning
nets [108]–[113].
We should start with finite automata since they are the most

basic among all symbolic contextual architectures.
1) FAs: A deterministic finite automaton FA for a mi-

croworld consists of symbolic states, ,
as indicated in Fig. 8. In contrast to the continuous monolithic
representations in Section III.B, the set of states typically
consists of only a finite number of discrete symbolic contexts
that the system designer concentrates on as samples of context
space.
The inputs to the FA are also symbolic. The input space is

denoted as , which can be a discretized
version of a continuous space of input. In sentence recognition,
e.g., the FA reads one word at a time. is equal to the number
of all possible words—the size of the vocabulary.
For example, reading input sentence “I already agreed,”

, and correspond to three subsequences “I,” “I al-
ready,” and “I already agreed,” respectively, that the FA needs
to detect. Fig. 8 gives two examples. It is important to note
that the “meanings” of the input labels and the text-described
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Fig. 8. Simplest symbolic contextual representations: Finite Automata (FAs).
(a) A left-right FA in which no state can transit to a state to its left, commonly
used in speech recognition. Each circle indicates a symbolic context, since the
network represents a symbolic context (e.g., a hand-selected word). (b) A more
general FA. It starts from . A label “other” means any symbol other than the
symbols marked from the state. The “other” transitions from the lower part are
omitted for clarity. All the English input labels and the lower three rows of
English text are only meant to facilitate human-to-human communications, not
part of the FA and not something that the FA understands.

meanings of each state in the lower three text rows of
Fig. 8(b) are only in the mind of the human designers to fa-
cilitate human-to-human communications. The FA does not
understand such meanings. This is a fundamental limitation of
all symbolic contextual representations.
A regular FA can be extended to an agent FA [114] which, at

each time, inputs a symbol and outputs its state .
In each state, cognition is part of action (e.g., vocal action or
manipulation).
For an FA with states, inputs, the set of transitions is

. The number of rules to
be designed is , since given any state and any input , the
next state is uniquely specified.
If the inputs are all correct, the architecture FA works well.

Good examples are numerous, from a word processor, to a
graphic user interface, to a video game.
2) Hierarchical FAs: Often, the symbolic concepts designed

by the human designer are not flat and instead, they have a hier-
archical structure. For example, in sentence recognition, words
are at a lower levelwhile sentences are at a higher level. Also, the
detector of a sentence needs to detect consecutive words. Fig. 9
illustrates the architecture of a hierarchical FA (HFA). States are
grouped to form higher states. The global state of a three-level
hierarchical FA is represented by a 3-tuple , where
represents the th local state at level . It is often that the same

lower level FA is used by multiple higher states. For example,
in speech recognition, two sentences may share the same word
detected by the same FA at the lower level. The arrangement of
such a shared word is also handcrafted.
Many of the published cognitive representations and the

associated cognitive architectures belong to this category.
Additional structures are specified to model other information

Fig. 9. Architecture of hierarchical FAs. Every higher state triggers an FA at
the next lower level whose first state is the initial state and the last is the goal
state. For clarity of the drawing, only the state at the middle has its triggered FA
shown.

used by the agent. The following are a few samples of such
architectures:
PSG: PSG seems the first production system that had an im-

plemented computer program. Newell [2] proposed that his pro-
duction system PSG models the mind. A PSG consists of sym-
bolic production rules as if-then or condition-action pairs. The
condition is incorporated by the context state and inputs. The
action is represented by the state output.
ACT-R:ACT-R is a family of cognitive architectures, devel-

oped by Anderson et al. [93], [115], aiming at modeling human
behaviors. It has different modules, each processing a different
type of information, such as sensory processing, intentions for
goals, declarative module for declarative knowledge, and action
module for procedural knowledge. The units in which knowl-
edge is represented in working memory are defined as chunks.
The goals of the task are represented by utility, which is the
difference between the expected benefit and the expected cost.
Learning in ACT-R can change its structure (e.g., a constant be-
comes variables with new substructures) and statistical param-
eters (e.g., expected cost).
Soar: Soar is another family of cognitive architectures [94],

[96] based on Production Systems. Procedural knowledge is
represented as production rules that are organized as context-de-
pendent operators which modify internal states and generate ex-
ternal actions, as illustrated in Fig. 10. A later version [116]
of Soar added episodic memory and semantic memory. The
former encodes a history of previous states, and the latter con-
tains declarative knowledge. Unlike ACT-R, the task and sub-
tasks are formulated as attempts to achieve goals and subgoals.
Thus, when knowledge is not sufficient to select an operator for
reaching a goal, an impasse occurs, during which Soar allows
the teacher to select a new subgoal or specify how to implement
the operator. Different learning mechanisms are used in Soar
for learning different types of knowledge: chunking and rein-
forcement learning for procedural knowledge and episodic and
semantic learning for declarative knowledge.
ICARUS: Proposed by Langley et al. [117], ICARUS has

two types of knowledge, environmental concepts and skills
for achieving goals. Both types are hierarchical. Environ-
mental symbolic objects are placed into a perceptual buffer
for primitive concept matching. Matched instances are added
to short-term beliefs as context, which triggers the matching
for higher-level concepts. In this sense, ICARUS models the
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Fig. 10. Instance of Soar is a solver for a given task (problem). Squares represent states. A shaded goal represents a goal state of the subtask. Inputs are represented
as features (e.g., ), with values (e.g., ) as condition of state transition. Adapted from Laird et al. [94].

sequence of matching over the hierarchical structure of parts of
the world objects.
3) Probabilistic Models: Randomness is due to a lack of

knowledge (uncertainty) or a simplification inmodeling. For ex-
ample, if all the detailed causality of tossing a coin is known and
accounted for, there is no randomness with coin tossing. This
perspective is useful for us to understand emergent representa-
tions, which avoid manually modeling the environment.
Tools of mathematical probability and statistics enable

human modelers to improve the performance of agents without
modeling details that are difficult to model correctly. If the
state is deterministic (completely observable) but transition
to the next state is probabilistic (e.g., due to input uncertainty
or action uncertainty), the corresponding model is called a
Markov chain. If the state that the system is in at any time
cannot be determined correctly, we call that the state is partially
observable or the state is hidden.
Depending on whether one needs a one-shot decision or

sequential decisions, two types of Markov models have been
used,HMM [105], [118], [119] and Markov decision processes
(MDPs) [104], [120], [102], respectively. By sequential de-
cisions, we mean that the final outcome depends on a series
of actions while each subsequent environment depends on
previous actions (e.g., chess playing and navigation).

a) One Shot Decision: If HMMs are used for classification
of temporal sequences, a different Markov model is used for
detection of a different temporal sequence as shown in Fig. 11.
Researchers on speech recognition [103], [121], [122] and com-
puter vision [123], [124], [98], [86] have used HMM for clas-
sifying temporal sensory inputs. HTM by George & Hawkins
[16] is a handcrafted, HMM based symbolic model, although it
was inspired by biological cortical computation.
To classify sequences (e.g., spoken words), HMMs are

needed, one for each word. For a more sophisticated system,
more than HMMs are used so that a smaller within-class vari-
ation is dealt with by each model. For example, different HMMs
are used for male speakers and female speakers.
The internal representation of each HMM here is sub-

symbolic—representing finer features within a hand-selected
symbol. A representation containing subsymbolic components
is still symbolic according to the Definition 3. In speech
recognition, e.g., the meaning of each node in HMM is typi-

Fig. 11. Architecture of an agent that uses HMMs for classification of dynamic
temporal sequences. A different HMM is used for modeling a particular type
of temporal sequence. Taking chunks from a temporal sequence, all models
compute their probabilities in parallel. Each model needs to update the prob-
abilities of all its states for every chunk of input sequence. To deal with the
time warping of the input stream, each model estimates the best time sequence
of its state transitions (e.g., different amounts of time to stay in each state), so
that the highest probability is computed from all possible time warping for the
word. The module of decision making reports the classification label from the
HMM that gives the highest probability. During training, each HMM only takes
samples of the assigned word. Therefore, manual internal access to the network
internal representation is necessary.

cally not explicitly determined. Instead this is done through a
preprocessing technique (e.g., k-mean clustering for a given
word) before HMM parameter refinement (e.g., using the
Baum-Welch algorithm). This is because a local refinement
algorithm, such as the Baum-Welch algorithm, only update the
probabilities of the transitions among defined symbolic states,
but does not define the symbolic states. The meaning of each
HMM is hand-defined (e.g., represent a word “Tom”) and thus
the meaning of each node in the HMM is still handcrafted. This
practice of assigning a different HMM to a different word is not
possible for autonomous development, since: 1) the tasks that
the agent will learn are unknown to the programmer before the
agent’s “birth;” and 2) the internal representation of the agent
is not accessible to the human programmer after the agent’s
“birth” [20]. For example, we cannot assign a cortical area to
deal with a particular word for the above two reasons.

b) Sequential Decision: This class includes all proba-
bilistic models that are based on symbolic states, including
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Bayesian nets, belief nets, semantic nets, and the Markov
decision process.
If the model is such that each state may issue an action, the

corresponding probabilistic model is calledMDP. The decisions
from a MDP is sequential in the following sense: A task is ac-
complished by a sequence of actions, issued from the sequence
of states. For example, the task of moving from spot A to spot
B is accomplished by a sequence of local motions executed by
a robot.
The partially observable MDP (POMDP) has been used for

range-based robot navigation [125], [126]. In contrast with the
HMM-based systems which model sensory temporal context,
an POMDP models the entire environment. Given each obser-
vation chunk, the model needs to update the probability of every
state. At each time step, the state with highest probability can be
considered the current state and the corresponding action is is-
sued.
4) Behavior-Based Methods: The subsumption architecture

proposed by Brooks 1986 [127], [128] belongs to the class of
symbolic contextual representations. However, it emphasizes
decomposition of behaviors, instead of context. Higher level
behaviors subsume lower-level behaviors. For example, colli-
sion avoidance is a lower level behavior, and path planning is
a higher level behavior. Kismet and Cog [129], [130] are more
extensive versions of the behavior based architecture. The be-
havior-basedmethod has clear advantages over symbolic mono-
lithic representations. However, coordination of different be-
haviors requires handcrafting which is subject to failures for
complex tasks.
5) Object–Action Framework: Ballard & Brown [131] ar-

gued that Gibson’s precomputational theory eschewed any ex-
plicit representation. They proposed that cooperative sensori-
motor behaviors can reduce the need for explicit representation.
Aloinomos [91] proposed that vision should be studied in the
context of purpose and actions. Only part of the visual world
that is immediately related to the purpose and the current action
(e.g., reaching) needs to be processed. This is exactly the idea
of contextual representation. This line of new thinking has been
adopted by an increasing number of robotic vision researchers.
Wörgötter et al. [132] reported their work under a framework of
object action complexes, which correctly emphasizes the con-
junction between object (sensory) and action (motor), but using
symbolic representations. Cohn et al. [133], Vernon [134] and
many others in computer vision correctly stressed the use em-
bodied actions as an integrated part of visual processing for ob-
jects, while using symbolic representations.
6) Learning in Symbolic Systems: Many symbolic systems

include mechanisms of learning, since manually specifying all
the agent structure detail and parameters is intractable for large
problems.
MDP, HMM, and POMDP have well formulated learning

algorithms. The objective of their learning is to compute the
values of the designed probability parameters. Online learning
algorithms update the probability values at every time instant.
An agent with states potentially requires an update of
transition probability values at each time step. Therefore, with
states for each HMM, time length and HMMs, the time

complexity for classification using a learned system is on the

order of [105]. When is exponential in the number of
concepts (see Section V-F), this scheme becomes impractical
for large problems.
Another more efficient approach to learning is to avoid using

probabilities. Q-learning [107] uses a reward value from the
environment to estimate the value of each action at each con-
text state. It assumes that the state is observable and at each
state there is a finite number of actions. This online algo-
rithm updates the estimated value of action at state
using a time. However, the convergence of by

this algorithm requires that the number of visits of every pos-
sible state-action pair approaches infinity.
There are many more cognitive models whose goal is to

model the mind or even the brain, but their modelers used
symbolic representations. Examples include CLARION by
Ron Sun [41], HTM by George & Hawkins [16], GNOSIS by
John Taylor et al. [135], ARTSCAN by Stephen Grossberg et
al. [136], Albus [42], and Tenenbaum et al. [43].
The above examples reviewed indicate an existing approach

to mental architecture research—extra-body concepts are hand-
crafted into the representation. How many extra-body concepts
to be handpicked and to be modeled is a human design choice.
However, several major factors suggest that symbolic mod-

eling is inappropriate for large problems and, thus, also insuffi-
cient for understanding the brain. In the following, the first two
problems are from my personal views. The later two problems
are well known [19], [99].
1) The state-size problem: An exponential number of states
is needed for complex tasks, as we discuss below. For ex-
ample, although a chess game has a finite number of states,
the number of all possible board configurations is an ex-
ponential function of the number of pieces on the board.
The number of states may be larger than the storage size of
any practical computers. Therefore, there seems no prac-
tical way to specify all possible state rules. Here comes a
basic problem of symbolic modeling: partition all the pos-
sible task states into a much smaller, tractable number of
symbolic states. As a smaller set of rules is used for many
task states, the output does not fit all these original states.
This causes the well known brittleness problem of a sym-
bolic system: As soon as the task situation does not fit the
symbolic model, the system breaks.Worse, the system fails
miserably as soon as the system makes a mistake, since
a wrong state leads to further wrong actions and wrong
states. Adding probability to a symbolic model only allevi-
ates the brittleness, but is not always sufficient to recover
from such representation failures.

2) The attention problem: The input space corresponds
to sensors, and thus it is a high dimensional continuous
space (e.g., the dimension equals to the number of pixels
in an image). At a different state, different subparts of the
input space are related to the next state. The locations
and shapes of these subparts are unknown and dynamic (at-
tention problem). These subparts are also related to system
state in a highly nonlinear, complex, and dynamic way. The
total number of such subparts is an exponential function of
the sensory dimension. No human designed symbols are
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sufficient to deal with such an exponential number of sub-
parts.

3) The frame problem: This is a problem of expressing a
dynamic world in logic by a disembodied agent without
explicitly specifying which environmental conditions are
not affected by an action. Some facts remain the same, but
others may change. In general, this problem is related to the
maintenance problem of a disembodied knowledge base.

4) The ramification problem: Actions of an agent may fail
and cause side effects that have not been modeled by a
symbolic representation. For example, an object may not
be successfully picked up by a robot hand, the robot wheels
may slip, and small items on an object may fall when the
object is picked up. The ramification problem is due to the
disembodied manual representation design—the agent is
not able to self-generate internal representation.

7) Comments:
a) Symbolic Versus Emergent: It is important to note a fun-

damental difference between a symbolic representation here and
the emergent representation to be discussed later. In a symbolic
representation, a symbol corresponds to an atomic concept de-
scribing a property of the environment. One symbol is sufficient
and is unique within the set of handcrafted concepts. In an emer-
gent representation, no internal element corresponds to any con-
cept that can be verbally communicated among humans.

b) Probabilistic Is Not Distributed: The flat system model
in Fig. 8 and the hierarchical model in Fig. 9 still use a symbolic
representation because the underlying fact still has one active
state at any time, not multiple.

c) Machine’s Ignorance of Internal Symbols: Themeaning
of a symbolic representation, either monolithic or contextual, is
only in the mind of the human designer, not sensed by the agent.
Therefore, the agent is not able to understand the meaning of the
representation. For example, as the agent does not “know” that
an internal HMM is for detecting word , it does not un-
derstand the word and cannot change the internal algorithm
to improve the recognition of .
There are some advantages with symbolic contextual repre-

sentations:
1) intuitive: the design of the representation is in terms of
human well understood symbols. Thus, the representation
is easier to comprehend;

2) unique: a symbol is unique. There is no ambiguity to tell
whether two symbols are the same.

There are also a series of disadvantages with a symbolic con-
textual representation. Some major ones are listed below.
1) Brittle. The more symbolic concepts and symbolic
models are manually designed, the more rigid walls are
built among them. Generalization across the walls is
disallowed by design. The automatic model applicability
checker—at any time which model applies and others
do not—is an unsolved hard problem [137], resulting in
brittle systems in real-world settings.

2) Wasteful. Although this representation is more efficient
than symbolic monolithic representation, it does not use
brain-like emergent representation with which the state of
the brain is determined by the corresponding firing pat-
tern. In Section V, we will see that a moderate number of

concepts require a large number of states, larger than the
number of neurons in the brain.

3) Insufficient. A symbolic representation does not provide
sufficient information to allow the use of relationships
among different symbolic states. In contrast, using emer-
gent representations, different firing patterns naturally
allow a determination of the goodness of match through
the neuronal responses of the next layer.

4) Static. A machine using a symbolic representation (e.g.,
Bayesian net) is not able to go beyond all possible com-
binations of the handpicked symbolic concepts. For ex-
ample, the chess-playing program IBM Deep Blue [138]
is not able to “step back” to view what it does in a larger
scope and to improve its method. It does not even “know”
that it does chess-playing. The same is true for the Jeop-
ardy Game program IBM Watson.

5) Nondevelopmental Although a symbolic representation
(e.g., Bayesian net) allows learning, its learning is not
fully autonomous (not AMD). The human teacher selects
a learning type (e.g., classical conditioning, instrumental
conditioning, fact learning, procedural learning, or transfer
learning). He feeds information into a particular module
in the “brain” during training. The “skull” of the machine
“brain” is not closed and the “brain” inside the “skull” is
not autonomous.

It appears that symbolic representationmight have a hard ceiling
in bottleneck problems of AI, including vision, audition and lan-
guage understanding.

IV. EMERGENT REPRESENTATIONS

The brain and artificial neural networks share the same
basic characteristic: the internal representation is emergent
from learning experience, regulated by the genes or a human
designed learning program [34], [35], [139], [20], [140], [28].
According to the Merriam-Webser online dictionary,

“symbol” is an arbitrary or conventional sign used in writing
or printing.
The meaning of a “symbol” in human communication is

slightly different from what is meant in computer programming.

A. Computer Symbols

Definition 4 (Computer Symbols): A system of computer
symbols is a basic coding (e.g., ASCII coding) for different
sensations and actions of symbols used in human communica-
tions. Such a coding must be unique for each class of equivalent
sensations and actions among humans who communicate.
For example, regardless how different the lower case “b” ap-

pears on a computer screen or on a printed page, the computer
industry agreed that its ASCII code in decimal form is 98. In
doing so, the computer industry assumes that a normal human
adult has no problem to correctly relate every his sensation of
“b” to the unique ASCII code 98. That is, computer symbols
are “consensual” among human adults. The uniqueness of the
code is important since different parts of a computer program
and different computer programs can all communicate correctly
without ambiguity.
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However, it appears that the brain never directly receives a
computer symbol (e.g., ASCII code) nor directly produces di-
rectly a computer symbol as we discussed below.

B. Symbols in Human Communications

The brain receives raw signals from eye, ears, and touch. For
example, the printed text “b” is read as different instances of
nonsymbolic video on the retina. Therefore, the brain does not
seem to receive any computer symbol directly since the unique-
ness in the raw sensory signals is almost never true.
Every instance of an action (muscle contraction) that de-

scribes the same meaning (e.g., pronounce the letter “b”) is at
least slightly different. Therefore, the brain does not seem to
directly produce a computer symbol either since the uniqueness
in the raw muscle signals is almost never true.
A correct interpretation of a sensation by the human is not

confirmed by another human until the corresponding action
from , often through a human language, is considered correct
by the human . For example, the human asks: “ What is
this?” The human replies: “This is a lower case ‘b.’”

C. Emergent Representation

From the above discussion, it seem unlikely that the human
brain internally uses a system like computer symbols, since
neither the uniqueness of the sensations into the brain nor the
uniqueness of the actions from the brain is guaranteed. Put in
short, the brain’s internal representations seem not symbolic.
This seems a natural consequence from autonomous develop-
ment since the skull of the agent “brain” is closed throughout
the lifetime—after the agent “birth” the human programmer is
not available [20] for direct supervision of the brain’s internal
organization.
This line of thought motivates our following definition of

emergent representation:
Definition 5 (Emergent Representation): An emergent rep-

resentation emerges autonomously from system’s interactions
with the external world and the internal world via its sensors
and its effectors without using the handcrafted (or gene-speci-
fied) content or the handcrafted boundaries for concepts about
the extra-body environments.
Based on Definition 3, a representation that partially uses

symbolic representation still belongs to symbolic representation
categorically, even if, e.g., some parts of it use neural networks.
Note that it is fine for a concept about the intrabody envi-

ronments (inside the body or inside brain) to be programmer-
handcrafted or gene-specified (e.g., eyes, muscles, neurons, and
dopamine), because the brain has direct access to objects in such
an intrabody environment during development. Innate behav-
iors (e.g., sucking and rooting) are intrabody concepts (e.g., re-
ceptors, neuronal connections, and muscles) but not extra-body
concepts (e.g., not nipple, since a stick can also elicit the sucking
inborn behavior). The genome uses morphogens (molecules lo-
cally released from cells) inside the body and the brain to guide
the migration of other cells to form brain laminar layers, body
tissues, and body organs [141], [142]. They also account for in-
born reflexes (e.g., sucking), but inborn reflexes are not extra-
body concepts.

Components of emergent representation in the brain include:
neuronal responses, synaptic conductance (weight vectors),
neuronal connections, neuronal plasticities, neuronal ages, cell
types, and neurotransmitter types.
Human teachers can interact with the brain’s sensory ports

and the motor ports to teach the brain. Only in simplified cases,
may a motor neuron (not part of internal representation) be su-
pervised to represent a unique meaning, but in general each
motor neuron (e.g., a muscle in the vocal tract) is used for dif-
ferent meanings (e.g., pronouncing different words).
For the brain to use an emergent representation, the brain’s in-

ternal networkmust autonomously self-organize its internal rep-
resentation (inside the skull) through experience. In particular,
the programmer does not hand-select extra-body concepts (e.g.,
objects, edges). Without extra-body concepts to start with, of
course the programmer does not handcraft any concept bound-
aries inside the “skull” for the agent brain. In other words, the
internal self-organization is autonomous.
One may say that such restrictions will make it much harder

to program an agent. Yes, this is true in terms of the knowledge
required to program a developmental agent. However, these re-
strictions are meant for the full “autonomy” in internal brain-
like mental development so that the agent can autonomously
scale up (develop) its mental skills without requiring too much
tedious human labor. In other words, a developmental agent is
harder for a human programmer to understand, but should be an
easier way for a machine to approach human level performance
than a nondevelopmental agent.

D. Networks That Use Emergent Representations

An emergent representation is harder for humans to under-
stand, as it is emergent in the sense that a particular meaning is
not uniquely represented by the status of a single neuron or by
a unique firing pattern of a set of neurons. This is in sharp con-
trast with a symbolic representation, where each single element
(symbol) uniquely represents a particular meaning.
Recurrent connectionist models draw inspiration from bio-

logical emergent representations. The examples include Mc-
Clelland et al. [143], Weng et al. [30], Elman et al. [34], Sprons
et al. [144],Wiemer [145], Roelfsema&VanOoyen [146], Sit &
Miikkulainen [147], Hinton [148], and Weng et al. [149] where
the representations are mostly emergent although some of these
models do not exactly satisfy our strict Definition 5 for a fully
emergent representation. The epigenetic development (ED) net-
work [114] (later called DN) further suggests that the meaning
of any neuron or any brain area cannot be precisely described
in a human language. Although the brain’s internal representa-
tion is related to some symbolic meanings (e.g., the direction of
edge features), the learning mechanisms are not rooted in such
symbolic meanings.
An emergent representation is typically distributed. By dis-

tributed, we mean that response values from many neurons are
necessary to complete a representation. In some special cases,
the distributed representation in a cortical area is degenerated
into a single neuron firing. However, this is a special case, in-
stead of the norm of emergent representation. Firing neurons
and not firing neurons all give information for the firing pattern.
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E. Biological Considerations

A classical study by Blakemore & Cooper [150] reported
that if kittens were raised in an environment with only vertical
edges, only neurons that respond to vertical or nearly vertical
edges were found in the primary visual cortex. Recently, such
knowledge has been greatly enriched. Experimental studies
have shown how the cortex develops through input-driven
self-organization, in a dynamic equilibrium with internal and
external inputs (e.g., Merzenich et al. [151], [152]; Callaway
& Katz [153]; Gilbert & Wiesel [154]; Lowel & Singer [155]).
Such dynamic development and adaptation occurs from the
prenatal stage (e.g., Feller et al. [156], Meister et al. [157])
and continues throughout infancy, childhood, and adulthood
(e.g., Wang & Merzenich [158], Drafoi & Sur [159]). Hosoya
& Meister [160] reported that even retinal representation is
adaptive. The spatio–temporal receptive fields and the response
of retinal ganglion cells change after a few seconds in a new
environment. The changes are adaptive, in that the new re-
ceptive field improves predictive coding under the new image
statistics. However, the computational principles underlying
the development (adaptation) of retinal, LGN, and cortical
neurons are elusive.
It is important to note that feature maps described in the neu-

roscience literature were generated using human selected spe-
cific stimuli. For example, an orientation map of the V1 area
[161] is generated using oriented gratings. It does not mean that
the purpose of a neuron in V1 is only for detecting a particular
orientation. Nor does it mean that a neuron’s peaked sensitivity
to a particular orientation of gratings is genetically fully speci-
fied. All feature maps seem activity-dependent [159], [28].

F. Networks Using Built-In Invariance

There have been many computational studies with a goal
of building adaptive networks for pattern recognition, regres-
sion and other applications. Some networks have built-in (pro-
grammed-in) invariance. Locational invariance has been com-
monly designed as a built-in invariance.
Neocognitron by Fukushima [162] is a self-organizing mul-

tilayered neural network for pattern recognition unaffected by
shift in location. Cresceptron by Weng et al. [32] has an ar-
chitectural framework similar to Fukushima’s Neocognitron but
the neural layers in Cresceptron are dynamically generated from
sensing experience. Thus, the circuits of Cresceptron is a func-
tion of sensory signals, but the same is not true with Neocog-
nitron. The above two networks have built-in shift-invariance
in that weights are copied across neurons centered at different
retinal locations. However, they do not provide effective mecha-
nisms for learning other types of invariance, such as size, orien-
tation, and lighting. Inspired by biological networks, the ED net-
work discussed below is not constrained by any practical type
of invariance and it has the potential to learn any type of invari-
ance sufficiently observed from experience.
Built-in invariance for an extra-body concept (e.g., location)

seems not desirable for AMD since the concept could be neces-
sary for some future tasks.

G. Networks Using Unsupervised Learning

The required invariance is learned object-by-object at the
last stage (e.g., a classifier). The self-organizing maps (SOM)
proposed by Teuvo Kohonen and many unsupervised variants
[163] belong to this category. Kohonen [164] seems to prefer
to use unsupervised SOM followed by the Learning Vector
Quantization (LVQ) method, which is basically a nearest
neighbor classifier. The self-organizing hierarchical mapping
by Zhang & Weng [165] was motivated by representation
completeness using incremental principle component analysis
(PCA) and showed that the neural coding can reconstruct the
original signal to a large degree. Miikkulainen et al. [166] de-
veloped a multilayer network LISSOM with nearby excitatory
interactions surrounded by inhibitory interactions. independent
component analysis (ICA) [167]–[170] has been propose for
feature extraction. There have been many other studies on
computational modeling of retinotopic networks1 (e.g., [171],
[172], [173], [174], and [175])
Some cognitive scientists believed that there exist two types

of learning in the brain, explicit (conscious, action-based)
and implicit (unconscious, not action-based, using episodic
memory) [176], [177]. According to the neuroanatomy, hardly
any area in the central nervous system does not have descending
connections from motor areas. Namely, unsupervised learning
seems rare among brain areas. For example, although recogni-
tion of an object does not necessarily involve an explicit arm
reaching action, one of its actions corresponds to the vocally
naming the object. For this reason, the lobe component analysis
(LCA) [178] was proposed as an optimal model for a cortical
area to extract features, but in general it takes both ascending
sources and descending sources as parallel inputs.

H. Networks Using Supervised Learning

With supervised learning, the label of the class to which each
sample belongs is available. The resulting features tend to be
discriminative, e.g., relatively sensitive to between-class varia-
tion and relatively insensitive to within class variation. Different
methods of learning give very different performances.
1) Error-Backpropagation: Gradient search has been widely

used for network learning [see, e.g., a overview byWerbos [179]
and LeCun et al. [180], cascade Correlation learning architec-
ture (CCLA) [181] and [182]]. An advantage of the error back
propagation is that the method is simple and can be incremental.
A major limitation is that the error signal is not directly avail-
able from the animal’s muscles (motor neurons).
Computationally, error back-propagation does not have an

effective mechanism for selecting and maintaining long-term
memory. Error gradient typically erases long-term memory that
is necessary for other examplars. CCLA adds a new node by
freezing the current network, which does not allow reuse of
memory resource. There is no clear evidence that the brain uses
error back-propagation.
2) Motor Output Is Directly Used for Learning: The ways to

use output fall into three types.
a) Discrete Outputs: Mathematically, discrete outputs can

be used as class labels to supervise feature extraction. This type

1Each neuron in the network corresponds to a location in the receptor surface.
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seems not suited for biological networks because biology does
not appear to produce discrete labels. The linear discriminant
analysis (LDA) ([183] [184] [185], [186]) is an example of su-
pervised linear feature extraction. The -nearest neighbor clas-
sifier is used in the LDA feature space. The support vector ma-
chines (SVM) [187]–[189] have been widely used for classifi-
cation tasks.

b) Continuous Outputs Form Clusters as Discrete La-
bels: This type uses continuous outputs to locally supervise
ascending feature clusters. The hierarchical discriminant re-
gression (HDR) by Hwang & Weng [190] and the incremental
HDR (IHDR) by Weng & Hwang [191] use clusters in the
high-dimensional output space as virtual labels to supervise
clusters in ascending space. The HDR engine has been used
for a variety of applications, from robot visual navigation [191],
speech recognition [192], skill transfer [193], to visuo–auditory
joint learning [194]. In these systems, the numerical output
vector and the input vector were combined as an expanded
input to the regressor.

c) Back-Project Continuous Outputs: ARTMAP [195]
is a nearest neighbor like classifier for each bottom-up vector
input in which each component is a feature value (symbolic,
not natural image). After memorizing all sufficiently different
ascending input vectors as prototypes, it uses descending
signals to successively suppress the current prototype under
consideration in order for the next prototype to be examined
for the degree of match with the input. Thus, the top-down
signal is not part of the features in ARTMAP, but as attention
signal in the consecutive nearest neighbor search. Roelfsema
& van Ooyen [146] proposed the attention-gated reinforce-
ment learning (AGREL) network, which uses gradient to
back-project descending signals as attention. In LISSOM
and MILN, neurons take input from ascending, lateral, and de-
scending connections. Thus, in these two systems, the top-down
vector and the bottom-up vector are both part of the features
to be detected, which raised new challenges in analysis and
understanding. Sit & Miikkulainen [147] explained that in a
recent version of LISSOM that uses descending connections, a
neuron responding to an edge can receive descending feedback
from neurons that detect corners in the next layer. In MILN,
descending connections were shown to generate soft invariance
from sensory input to motor output (Weng & Luciw [196]), to
improve the “purity” of neurons (Weng et al. [197]), to increase
the recognition rate and reduce neuronal entropy (Weng et al.
[198]), to group neurons for similar outputs together (Luciw
& Weng [199]), and to generate temporally equivalent states
(Weng et al. [200]). Motivated by the brain neuroanatomy,
Weng [114] proposed that each cortical area uses LCA like
mechanisms to develop feature clusters in the parallel space
of ascending input (e.g., image) and descending input (e.g.,
motor). The Where–What Network 3 by Luciw & Weng [201]
hints how the brain learns concepts from motor supervision and
uses its emergent concepts as dynamic goals on the fly to attend
part of the external environment against complex backgrounds.
Among the above three types, the third type c) seems rela-

tively closer to what the cortex uses, but this type is also the

most difficult type to analyze and understand. Are such net-
works of general purpose, especially with regard to what sym-
bolic models can do through handcrafting (e.g., temporal rea-
soning)? Recently, a positive answer to this question was pro-
posed [114]. To understand what it means, we need to first look
into the brain’s need to process temporal information.

I. Networks Using Emergent Representation for Time

Different actions from the mind depend on different subsets
of the past, of different temporal lengths and of different com-
binations of past experience. The state inside an agent has been
used to represent all (often infinitely many) equivalent tem-
poral contexts. In a symbolic temporal model, such states are
handcrafted (e.g., HMM and POMDP). For a larger problem,
the human designer handcrafts all allowable state transitions
(e.g., left-to-right models or a sparse diagram for allowable
state-transitions).
To generate emergent representations, the brain (natural or ar-

tificial) must self-generate states, not imposing their meanings
and not specifying the boundaries of state meanings. Addition-
ally, it is desirable not to provide a static diagram for allowable
state-transitions. These goals are still not well recognized and
accepted in the AI community.
Local recurrence in the network has been a common tech-

nique to generate temporal states. The Hopfield network [202]
has a single layer, where every neuron in the layer sends its
output to all other nodes except itself. The Elman Network and
the Jordan Network [203] use local recurrence for a layer in a
multilayer network. The Boltzman machine [204] is the sto-
chastic and generative counterpart of Hopfield networks with
symmetric connection weights. The Long Short Term Memory
LSTM [39] adds a specially designed type of network mod-
ules called “error carousels” into a feedforward network so that
the required short memory inside the network can be delayed
as long as externally controlled. A Deep Belief Net [205] is a
cascade of several Boltzman machines with tied weights across
different Boltzman machines. Other major recurrent networks
include Omlin & Giles [206], Wiemer [145], Roelfsema & van
Ooyen [146], Sit & Miikkulainen [147], Golarai et al. [207],
Reddy et al. [208].
The above models made advances in autonomously devel-

oping internal states without requiring the human programmer
to handcraft the meanings of such states. The primary pur-
pose of the above temporal networks is to predict temporal
sequences so that the system can respond similarly when sim-
ilar sequences are presented again. A major limitation of the
above temporal networks is that they do not perform emergent,
many-to-one, on-the-fly mapping for all equivalent temporal
states. Consequently, they cannot effectively perform brain-like
transfer learning discussed below.

J. Networks for Temporal Transfers

The brain does not just do rote learning. It uses logic-like (but
numeric) operations in time to transfer temporal associations to
other very different temporal sequences, without having to learn
every possible temporal sequence exhaustively. A temporal
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mechanism that the brain appears to use (Weng [114]) is to au-
tonomously form many equivalent states in early time, similar
to the states in a Finite Automaton (FA), but nonsymbolic. Each
state considers that multiple temporal experiences are equiva-
lent. Then, the brain automatically applies such equivalences to
generate more complex temporal behaviors later, including for
many temporal sequences that have never observed. Several
well known associative learning procedures belong to this type
of temporal transfer learning, such as classical conditioning,
secondary classical conditioning, instrumental conditioning,
and complex sequence learning—scaffolding from shorter to
longer sequences [209].
Almassy et al. 1998 [174] designed and experimented with

a network for their Darwin robot that demonstrated behaviors
similar to the secondary classical conditioning. Zhang & Weng
[193] designed and experimented with a network for their SAIL
robot that demonstrated a general-purpose nature of associa-
tive learning—transfer—transfer shorter and simpler associa-
tive skills to new settings and new sequences. This is equivalent
to autonomously developing more complex and longer associa-
tive mental skills without explicit learning.
The above two networks displayed new skills for tasks that

were unknown during the programming time, going beyond a
finite combination of otherwise handcrafted symbolic states.
However, the full potential of such transfer learning was still
unclear till emergent representations could perform general-pur-
pose goal-dependent reasoning as discussed below.

K. Networks for Goal Emergence and Goal-Dependent
Reasoning

Connectionist Annette Karmiloff-Smith [210] argued against
Fodor’s anticonstructivist nativism (similar to symbolic AI)
and Piaget’s antinativist constructivism (development but
without a connectionist account), based on her position that
development involves two complementary processes of pro-
gressive modularization and progressive explicitation. Her
arguments for the two complementary processes is consis-
tent with the principle of emergent representations where the
modules are emergent, not having clear cut boundaries, and
are experience-dependent. Rogers & McClelland [211] refuted
the “theory-theory” approach to semantic knowledge using
their feedforward connectionist model. Their language model
uses distributed representation (not yet emergent) and allows
single-frame classification and text pattern recognition, but
their feedforward-only model, without further extension, does
not seem to allow recurrent, context-dependent, goal-dependent
reasoning.
Newell [3], Pylyshyn [49], Fodor [50] and Harnad [52] pro-

posed that a symbolic system is “rulefully combining”. Marvin
Minsky [212] argued that prior neural networks do not perform
goal-directed reasoning well. These perspectives manifested a
great challenge that emergent models have faced for several
decades.
Goal-directed in AI typically means “based on the given

goal.” In this review, I use the term “goal-dependent” since the
goal should emerge and change autonomously on the fly.

The SASE model by Weng [213] proposed that internal at-
tention is necessary as internal action (self-effecting) and such
internal “thinking” actions are self-aware when they emerge
from the motor area. The SASE model was further advanced
by the brain-scale but simplified ED network model proposed
by Weng [114]. The ED network model is capable of learning
concepts and later using concepts as emergent goals for goal-di-
rected reasoning. This was experimentally demonstrated by the
Where–What Networks [214], [215], [201], [216], where the
goals dynamically emerge and change autonomously, from one
time frame to next, among free-viewing, type-goal, and location
goal, displaying many different goal patterns for the learned lo-
cation and type concepts.
The ED network model uses the motor areas in as the hubs

for emergent concepts (e.g., goal, location and type), abstraction
(many forms mapped to one equivalent state), and reasoning (as
goal-dependent emergent action). The motor areas appear to be
conceptual hubs in the brain, due to:
1) episodic concepts (e.g., object type) can be motor-
ized—verbalized, written, or signed—and be calibrated
by a human society;

2) procedure concepts (e.g., arm manipulation) can also be
motorized—reaching, grasping, or acting—and be cali-
brated by a human society.

By calibration above, we mean that feedbacks from human
teachers or physical outcome of manipulation can indicate
whether the action is sufficiently precise.
Theoretically, the ED network model uses a brain anatomy

inspired, general-purpose basic network unit which contains
three areas—sensory areas (e.g., image), internal area
(e.g., brain), and motor area (e.g., muscles). In such a
network unit, the area connects with other two areas
and through two-way connections. The area is like a
limited-resource “bridge” which predicts the two areas and
as its two “banks”—from and at time to and
at time . LCA is a dually optimal model for

neurons in the area to represent what each best represents.
Goal-dependent reasoning-and-thinking behaviors emerge
[216], [114] from these highly concise brain-like mechanisms.
However, the general-purpose nature of such emergent rea-
soning mechanisms is unclear without answering the following
fundamental question.

L. Can Emergent Models Do All Symbolic Models Can?

As a real-time agent, a hand-crafted FA uses the context de-
pendent rules to reason. However, an FA is static as we dis-
cussed above. Can an emergent network incrementally learn to
become equivalent to any FA in its external environment based
on observing the FA’s inputs and outputs?
Theoretically,Weng 2010 [114] explained that, given any FA,

an ED can incrementally learn all functions of FA, but using
distributed representations (e.g., images) for sensory area ,
internal area , and motor area . The sensory senses image
codes of the symbolic input symbols of the FA. The motor
inputs (as supervision when needed) and outputs image codes
of the states of the FA. The ED generates internal area with
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its connections (which FA does not have), corresponding to the
internal representations.
However, the speed for ED to learn FA was not clear. This

situation changed when a generative version of ED, called gen-
erative developmental network (GDN) was synthesized along
with three theorems [217]. The proofs of the three theorems are
available at [218].
Theorem 1 states that there is a GDN that learns any com-

plex imaginary FA, in a grounded way (vector observations),
by observing one state transition at a time, immediately, and
error free. The FA is represented by the union of different human
teachers the GDN met in the life time, but it does not have to be
available as a batch at any single time. The imaginary FA does
not need any symbolic handcrafting since GDN is grounded.
Thanks to grounding, the imaginary FA seems always consistent
as long as the grounded sensor of GDN senses sufficient con-
texts (e.g., different teachers may state different views and the
same teacher may state different views on different dates). This
is a departure from conventional networks which require itera-
tive approximation, and are subject to local maxima. This means
that from any training sequence data that are spatio–temporal in
nature, the GDN guarantees error-free in its outputs during the
resubstitution tests (i.e., tests using training data) of its incre-
mental learning on the fly.
Theorem 2 states that if the FA-learned GDN computes re-

sponses for infinitely many possible sensory inputs and actions
in the real physical world but freezes its adaptive part, it gener-
alizes optimally in the sense of maximum likelihood based on
its prior FA learning. This means that the above learned GDN is
not only error-free for training data, but also optimal for disjoint
tests (i.e., tests using data other than the training set).
Theorem 3 states that if the FA-learned GDN is allowed to

adapt for infinitely many possible sensory inputs and actions
in the real physical world, it “thinks” optimally in the sense
of maximum likelihood based on its FA learning and its later
learning. This means that the above learned GDN is not only
error-free for training data, but also optimal for thinking-like
creativity for disjoint tests.
A known limitation of such a motivation-free GDN is that it

does not have bias for experience (e.g., likes and dislikes). The
motivated versions of the emergent GDN will be reported for
different tasks in Daly et al. [219] and Paslaski et al. [220].
This theory unifies the symbolic models and the emergent

models, if one considers the following way: Symbolic models
do not have any internal representation and their inputs and out-
puts are symbolic. Emergent models have internal representa-
tions (e.g., the emergent area and connections) and their in-
puts and outputs are grounded in the physical world (e.g., im-
ages and muscles). Yes, categorically, it seems that emergent
models can do all symbolic models can, at least in principle, but
also grounded (i.e., directly sensing and acting in the physical
world) and not task-specific.

M. Comments

The advantages of emergent models include:
1) nonalgorithmic in task space: neural networks can solve
problems that do not yet have an algorithmic solution in
the task space or too complex to explicitly handcraft;

2) numerical in signal space: neural networks treat all the
tasks as regression in signal space, allowing mathematical
optimization theories to be applied without even knowing
the actual task;

3) emergence: representations are fully emergent through
fully autonomous DP inside the skull of the network;

4) uniform processors: neuronal learning and computations
may be carried out in parallel, and relatively low cost hard-
ware with uniform processors can be fabricated which take
advantage of this characteristics;

5) fault tolerance: partial destruction of a network leads to
the corresponding degradation of performance, but other
network capabilities are largely retained;

6) can abstract: the latest theory of brain-mind network has
shown that a network can attend and abstract spatio–tem-
porally;

7) low, middle, and high levels: it has been shown that ED
networks not only deal with visual attention, perception,
cognition, and behavior, but also process logic-like high-
level knowledge (e.g., Miyan &Weng [216]), since knowl-
edge hierarchies and their relationships are all emergent;

8) creativity: creativity for new knowledge and skills, such as
those in Miyan &Weng [216], is from emergent properties
of the emergent representations.

At the current stage of knowledge, the existing emergent
models still have some shortcomings:
1) not intuitive: the responses of neurons do not have lin-
guistically pure meanings, not as intuitive as a symbolic
representation;

2) yet to show scaling up to animal brains: it has not yet
been demonstrated that a large scale emergent model can
autonomously develop a wide variety of brain-like mental
skills as a cat or a human child, including vision, audition,
and language understanding.

However, these two shortcomings are expected to be removed
before too long.

V. CONCEPTUAL COMPARISON

In the following, we put the two large schools—the symbolic
school and the emergent school—into the same picture for our
discussion. Table II gives a summary of some models and their
properties. “Mix” denotes symbolic models wherein some local
representations are emergent.

A. Brain Architecture

Symbolic AI methods have been motivated by the mind but
not tangibly by the brain. They are inspired by psychological ob-
servations from human external behaviors, not truly supported
by the internal operations of the brain.
The biological work of Sur’s group [226] has demonstrated

that if the brain was rewired early in life so that the auditory
pathway receives visual information, the visual representations
emerge in the “sound” zone and furthermore, the “sound” zone
does some visual tasks successfully. Intuitively, this interesting
and illuminating phenomenon seems unlikely to be restricted
only to the auditory pathway, since different cortical areas have
demonstrated other similar plasticity properties [28], ([34], pp.
270–283). The neuroscience studies showed that in the central
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TABLE II
OVERVIEW OF SOME MAJOR AGENT MODELS AND REPRESENTATIONS

nervous system—from the spinal cord, to the hind brain, the mid
brain and the forebrain—neuron in a higher brain area innervate
lower brain areas, while a lower area tends to develop earlier
[141], [11], [28].
Inspired by the above and other more detailed evidence from

neuroscience, the brain-scale model of Weng [114] takes into
account five conceptual chunks: development—how the brain
incrementally grows from experience; architecture—how the
brain connects and works; area—how each brain area emerges
and works; space—how the brain deals with spatial informa-
tion; and time—how the brain deals with temporal informa-
tion. From the way these five chunks work intimately together,
I argued that none of the five chunks can be missing for under-
standing how the natural brain-mind works and for simulating
the brain-mind using computers and robots. An additional chunk
is modulation, which deals with actions that depend on dis-
likes, likes, novelty, confidence, etc. But neuromodulation must
be cased on the first five chunks. Thus, the expended brain-mind
model is called chunk [227].
This model predicts that the internal structure of the internal

brain emerges from the statistical properties between the two
“banks”—sensors and effectors—it serves. Consequently, it is
not like a chain of areas proposed by Lee & Mumford [44] for
cortical areas. A network of rich cortical connections was re-
viewed by Stone et al. [228], Felleman & Van Essen [9], and
Corbetta & Shulman [229]. Weng’s model [114] is not com-
pletely consistent with the three-role model of Doya [230] who
suggested that the basal ganglia, the cerebellum, and the cere-
bral cortex used supervised, reinforcement, and unsupervised
learning modes, respectively. Weng’s model predicts that each
area , regardless in which part of the brain, is capable of per-
forming all kinds of learning depending on whether the teaching
signals are generated from its banks (supervised) or the cortical
area itself (self-learning), and whether the neuromodulaters
(e.g., serotonin, dopamine, acetylcholine, and norepinephrine)
are transmitted into it or synthesized from it [231], [232] (rein-
forcement learning, habituation, sensitization, motivation, and

beyond). In particular, neuroanatomic wiring [9], [233] does not
seem to support that motor error signals (which often require the
ground truth) are available in the basal ganglia. However, future
work is required to clarify such differences.

B. Symbolic Representations Are External

To relate symbolic models with the brain, we can consider
in the following way: When a human designer models a sym-
bolic system using his intuition without looking into the skull
of the real brain, he inevitably uses what he observed from the
external behaviors generated by his brain and other brains. This
appears to be what many psychologists are doing. Therefore, the
representations they have designed tend to be external represen-
tations for the brain—externally observed brain behaviors.
For example, Weng [114] explained that a symbolic system is

like an FA as its base system. If it uses learning, the learning de-
termines its parameters as probability values, but its “skeleton”
base is still external representations, since they model the prob-
abilities of human observed inconsistent transitions between
every pair of external states.

C. Attention

Spatio–temporal attention seems the essence of natural intel-
ligence, but such skills are accumulated through much experi-
ence in the real physical world. For example, perception, cog-
nition, behavior, reasoning, and planning appear to require at-
tention as a central capability: From the “sea” of information
externally and internally, context-dependent attention picks up
only the information that is directly related to the next action
[114]. Perception, cognition, behavior, reasoning, and planning
are human words for emphasizing different aspects of this uni-
fied real time brain process.
It has been known for many years that descending connec-

tions from later areas (e.g., V1) to early cortical areas (e.g.,
LGN) extensively exist. They do not back-project errors but
the back-project signals themselves (Kennedy & Bullier [234],
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Perkel et al. [235], Felleman & Van Essen [9], Katz & Call-
away [236], Salin & Bullier [237], Johnson & Burkhalter [238],
Buschman & Miller [239]).
Goal directed search is a major subject in symbolic AI, where

the task goal is given from the given task or from a task-specific
query. It is static once given. Attention has been largely ignored
by the symbolic AI, from computer vision, to speech recogni-
tion, and to natural language processing—the three major chal-
lenging subjects of AI. Ascending feature fitting has been a
major goal of such symbolic recognition systems.
Bottom-up attention has been extensively modeled as

saliency during free-viewing [222], [240]–[242]. Free-viewing
has been modeled as a special case of more general goal-de-
pendent top-down attention [201] when the top-down attention
is “flat.”
There have been some neural network models that use

descending connections (Grossberg et al. [243], [244], Deco
& Rolls [225], Roelfsema & van Ooyen [146], Sit & Miikku-
lainen [147], Weng et al. [149]). However, a clear general
analysis lacked. In the where–what networks (WWNs) [214],
[215], [201], [245] descending information was modeled as
goals (e.g., location values and/or type values) that bias not
only the outcome of bottom–up competition, but also greatly
affect the feature development. The spatio–temporal WWN
[201], [200], [246], [114] further models descending informa-
tion as spatio–temporal context which can represent real-time
emerging goal, intent, cognition, and action. Learned WWNs
detect and recognize individual objects from natural complex
backgrounds [201] and, in language acquisition, generalize
beyond learned exemplar sequences (simple thinking) [216].
Any such spatio–temporal context at each time instant is rep-
resented as a firing pattern in the motor area. Infinitely many
sequences of experience is mapped by the network to a single
equivalent spatio–temporal context like a symbolic FA. Such
a many-to-one mapping is incrementally learned, representing
abstraction and reasoning.
The biological Hebbian mechanism [247], [248] is powerful

in that it enables each neuron to incrementally compute the
probability of presynaptic firings conditioned on the postsy-
naptic firing [217]. Using this mechanism, every neuron incre-
mentally figures out the feature vector that it is supposed to de-
tect while it interacts with other connected neurons. However,
this learning mechanism seems not sufficient for each neuron
to autonomously disregard input components that are distrac-
tors in the default input field of the neuron (e.g., background
pixels outside the contour of a foreground object appearance).
A model about biological synaptic maintenance byWang et al.
[249] shows how each neuron autonomously grows or retracts
its synapses. While every neuron does its own synaptic main-
tenance and Hebbian learning, the entire network emerges to
perform general-purpose and highly integrated series of brain-
like functions. These functions [114] include, but not limited
to, attention, detection, recognition, segmentation, action gen-
eration, goal emergence, and reasoning, all directly from un-
known complex natural backgrounds, without a need for any
handcrafted object models or event models. Handcrafting such
models are common in the current computer vision community,

using symbolic models (see, e.g., Yuille et al. [100] and Yao and
Fei-Fei [87]).
In general, emergent models question the widely held view

in AI that vision is a self-functioning module which could be
isolated from cognition, behavior generation, and motivation.
Without actions in the motor areas, the brain cannot figure out
where to sense, what is sensed, and what response to generate
next. This line of thought seems consistent with many neuro-
science and psychological studies (see. e.g., [250]–[252]). A
classical experiment of Held & Hein 1963 [253] demonstrated
a sharp difference in visual capability between a cat having de-
veloped through only passive looking and another one that has
developed through a process of autonomous actions.

D. Solution for Inconsistent Behaviors

At any time, a symbolic system may have to choose among
multiple inconsistent symbolic actions. The resolution of such
actions has been an open problem. The subsumption architec-
ture proposed by R. Brooks [127] and others [254] is such that
higher level actions subsume lower levels, where action levels
are handcrafted. In many symbolic agents, only one of the ac-
tions applicable at any time can be issued based on the highest
estimated state-action value [107], [112]. Thus, such systems
are not able to learn behaviors that require multiple actions to
be carried out concurrently (e.g., after learning single-hand ac-
tions, learn two-hand actions).
The ED network model [114] indicates that a resolution to be-

havior conflicts is a natural consequence of learned experience
under the joint context of the sensory ends, the internal area, and
the motor ends. For example, parallel location action and type
action are produced concurrently in a WWN, but they must be
consistent with the current spatio–temporal context.

E. Fully Autonomous Knowledge Self-Update

Using a symbolic expert system, the meanings of each state
are only in the mind of the human designer and the machine
does not “know” such meanings. Therefore, adding a new piece
of knowledge into such a system needs to manually check for
consistency with the existing large number of transition rules.
Such a consistency checking is tedious and error prone [255].
In contrast, knowledge in an emergent model is represented

in a way that facilitates updates. An emergent model not only
learns new knowledge (e.g., a new state and the associated tran-
sition) but also integrates each piece of new knowledge fully au-
tonomously inside the skull. This is because each internal area
(“bridge”) connects with all the related neurons in the corre-
sponding areas (“banks”). The well-known bottleneck problem
in knowledge updates for a symbolic expert system becomes
fully automatic and robust for an emergent network like the ED
network.

F. Complexity Difference

Suppose that an agent, natural and artificial, needs to deal
with concepts and each concept takes one of values. The
corresponding symbolic model potentially requires different
states, exponential in . Letting and , the symbolic
model potentially needs
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, larger than the number of neurons in the
human brain. Here are 23 examples of concept: object type, hor-
izontal direction, vertical direction, object pose, apparent scale
on the retina, viewing distance, viewing angle, surface texture,
surface color, surface reflectance, lighting direction, lighting
color, lighting uniformity, material, weight, temperature, de-
formability, purpose, usage, owner, price, horizontal relation-
ship between two attended objects, vertical relationship between
two attended objects. This is a complexity reason why the brian
cannot use symbolic states for its internal representations.
We need also consider that a human designer typically merges

many states. For example, ACT-R and Soar used handcrafted
conditions meant to merge equivalent states into a single meta
state. However, it is intractable for a human to examine that
many symbolic states and decide which ones are equivalent, es-
pecially for an open real world. Therefore, he designs condi-
tions for every meta state without exhaustively checking its va-
lidity for the exponential number of real-world states and even
more their state trajectories. This is a new complexity reason
why symbolic agents are known to be brittle in practical appli-
cations. Probabilities only alleviate the inconsistencies of such
handcrafted states (better if the states are observable but it is not
so with hidden Markov models), but training data are often not
sufficient for reaching an acceptable error rates, especially for
an open real world.
Next, consider the WWN. For concepts, each having

values, the number of motor neurons in WWN is only .
With and only, instead of . An
emergent model like WWN uses further internal weight vectors
as clusters in the parallel input space from the sensory
vector space and the action vector space . The smooth
representations in terms of and allow a limited number of
synaptic weight clusters to interpolate in the high-dimensional
continuous space of to automatically partition an
unbounded number of states arising from the open-ended real
world.

G. Temporal Generalization as Brain-Like Thinking

An FA can be handcrafted to properly deal with temporal
context of any finite length, if each symbolic input is fed
through time. This is the major reason why an HMM based on
FA can recognize spoken sentences of any practical length. But
an HMM is handcrafted and symbolic.
An emergent ED-like network can simulate any FA and, fur-

thermore, it is developed incrementally [114]. That is, new rep-
resentation (i.e., knowledge and skills) are maintained inside the
network fully autonomously. In other words, it is now possible
to incrementally and autonomously develop a very complex
probabilistic FA (e.g., HMM-like or MOPDP-like, but emer-
gent) through sensory and motor interactions.
Furthermore, an FA cannot generalize once handcrafted.

HMM and POMDP cannot generalize beyond handling the
probability modeled uncertainty either, due to their symbolic
nature—there is no distance metrics between the symbolic
states.
An emergent ED-like network can perform temporal general-

ization (brain-like thinking) using internal attention, as shown

in member-to-class generalization, member-to-member gener-
alization, subclass-to-superclass generalization in early natural
language learning as demonstrated in Miyan &Weng [216]. All
such generalization is rooted in temporal thinking-ahead mech-
anisms of the internal representations, not based on mathematic
logic. In particular, knowledge hierarchies, likely more com-
plete than those handcrafted into a hierarchical FA, as well as
relationships among knowledge hierarchies are all emergent in
an ED.
The ED network model predicts that brain-like thinking is

not based on handcrafted mathematic logic, but instead based
on recursive competitions among neurons in each brain area at
every time frame, where every neuron competes to fire using
its goodness of match between its weight vector and the two
parallel inputs to the area: the descending state-context and the
ascending sensory-context.

H. Motivation and Neuromodulation

Motivation seems a more general subject than emotion, by
including more basic value-dependent drives, such as dislikes
and likes (e.g., pain avoidance and pleasure seeking), and
higher value-dependent behaviors, such as novelty seeking.
Neuromodulation seems a more general subject than moti-
vation, e.g., by including actions depending on confidence.
There have been several models for the intrinsic motivation
of a developmental system, to include motivation to learn
(Oudeyer et al. [256]) and novelty (Huang & Weng [257]) in
addition to punishment and rewards dealt with by symbolic
reinforcement learning. Almassy et al. [174], Krichmar [258]
and Krichmar [259] modeled the role of neuromodulators in
affecting robot behaviors. Daly et al. [219] proposed a frame-
work for neuromodulation based on emergent representations.
Such emergent neuromodulation was tested on autonomous
navigation settings in Daly et al. [219] and on visual recogni-
tion in Paslaski et al. [220]. Much work remains to integrate
the mechanisms of neuromodulation into the capabilities of
perception, cognition and behavior of brain-like emergent net-
works, so that learning is not only fully autonomous inside the
skull-closed network but also highly efficient for each living
age.

VI. CONCLUSION

Top–down attention, essential for natural and artificial in-
telligence, has been largely ignored. Understanding the func-
tions of the natural “genome” program—developmental pro-
gram (DP)—provides a platform for understanding human intel-
ligence and for solving bottleneck problems of artificial intelli-
gence. AMD requires that the organization of internal represen-
tations is fully autonomous, regulated by the DP, natural or ar-
tificial. This requirement is not meant to make human program-
ming harder, but to enable autonomous agents to provide brain
mechanisms for which the current symbolic models have met
intractable limitations—autonomous intent/goal emergence, in-
tent-dependent spatial attention, intent-dependent temporal at-
tention, resolution of inconsistent behaviors, and handcrafting
symbolic representations for large practical problems but are
not brittle for open task environments. However, the potential of



WENG: SYMBOLIC MODELS AND EMERGENT MODELS: A REVIEW 49

emergent models needs to be further studied and demonstrated
for larger practical problems.
Interestingly, the newly established relationship between

each FA and the corresponding ED network indicates that
symbolic models and emergent models are intimately related:
The FA framework has been used by computer scientists as a
tool to communicate about symbolic knowledge since it de-
scribes brain’s external behaviors using human understandable
symbols. An FA is disembodied as it uses symbolic inputs and
symbolic outputs. However, a handcrafted FA can be used as
a guide in teaching a grounded emergent ED-like network.
Therefore brain-like emergent representation includes symbolic
representation as a special degenerated case, in the sense that
an FA corresponds to some static external behaviors (coded
by symbols) of an emergent ED-like network, not including
the internal representations and the generalization power of
the ED-like network such as thinking for new subjects. The
additional power of emergent representations needs to be
further explored, including its power and limitation in enabling
machines to think like the brain.
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